Krantiguru Shyamji Krishna Verma *Kachchh University* Mundra Road BHUJ: 370 001

SYLLABUS (CBCS)

B. Sc. Semester III: (THREE)

CHEMISTRY With effect from June 2023

Credit F	ramework	and	course	code	for	Secon	nd Year	(SEM	-III)	Chemist	ry
Programme.											
Year	Semester	C	ourse Code	Pap	oer T	itle	Credits	Ma: CA	rks UA	Total	

теаг	Semester	Code	Paper Title	Credits	CA	UA	
		MAJ CHE-	Bio-organic Chemistry	3	35	40	75
		(Theory)	Chemistry				
		MAI CHE-	Bio-organic	1	15	10	25
		302-P	Chemistry -	_			
		(Practical)	PRACTICAL				
		MAJ CHE-	Organic	3	35	40	75
		303	Chemistry				
		(Theory)					
		MAJ CHE-	Organic	1	15	10	25
		304-P	Chemistry -				
		(Practical)	PRACTICAL				
Second	III	MAJ CHE-	Inorganic	3	35	40	75
Year		305	Chemistry				
		(Theory)	. .		45	10	05
		MAJ CHE-	Inorganic	1	15	10	25
		306-P	Chemistry -				
		(Practical)	PRACIICAL	12			200
			Pio organic	2	25	40	300 75
		307	Chomistry	5	35	40	75
		(Theory)	Gliennistry				
		MDC CHE-	Bio-organic	1	15	10	25
		308-P	Chemistry -	-	10	10	20
		(Practical)	PRACTICAL				
		Total	Credits	4			100

Structure of the Question Paper (Theory) for the University Exam

KACHCHH UNIVERSITY: BHUJ SECOND YEAR B.Sc.: CBCS: SEMESTER: III (THREE) CHEMISTRY PAPER NAME: Bio-organic/Organic/Inorganic Chemistry PAPER CODE NO: MAJ CHE -301/303/305, MDC CHE- 307 Total Marks: 40, Passing standard: 16 Marks

PATTERN OF QUESTION PAPER

FOR SEMESTER-END EXAMS

Questions	Section	Marks
Question-1 (Unit-I)	(Descriptive - Essay type - Short notes with internal option)	10 marks
Question-2 (Unit-II)	do	10 marks
Question-3 (Unit-III)	do	10 marks
Question – 4 (Unit-I, II & III)	Total 12 short questions of 1 marks, each unit will have 4 questions. students will attempt any 10 out of 12	10 Marks

- Question 4 may include one line answers/ two line answers/ definitions/ reasoning/ derivations of equations/ derivations of sums/ drawing small figures/ matching the figures/ fill in the blanks/ multiple choice question/ one word answer/ match the pairs etc.
- Industrial Visit/ Project work/ Tour/ other activity (Given by teacher or as a part of Syllabus) will be mandatory for all the students.
- The language of the question papers shall be English.

KACHCHH UNIVERSITY: BHUJ SECONND YEAR B.Sc.: CBCS: SEMESTER: III (THREE) CHEMISTRY PAPER NAME: BIO-ORGANIC CHEMISTRY PAPER CODE NO: MAJ CHE-301

Course Outcomes (COs):					
Upon successful completion of these papers' students will learn about concepts of Basic					
Chemistry, like Carbohydrates, Amino acids, Proteins, Lipids. This study will be helpful in					
further study, competitive exam and industries.					
UNIT-I	CARBOHYDRATES				
	Definition, Classification, Nomenclature of parent and derivatives, Reactions with open chain structure of Glucose and Fructose: Oxidation (using Bromine water, Tollens' reagent, Fehling's reagent, HIO ₄ and conc. HNO ₃), Reduction of Glucose and Fructose, Acetylation of Glucose and Fructose, Epimer and Epimerization, Osazone formation with mechanism and importance, Killiani-Fischer synthesis, Ruff degradation, Open chain structure of Glucose, Cyclic structure of Glucose and conformations				
UNIT-II		15 Hours			
	(A) AMINO ACIDS:	7 Hrs			
	Definition, structural formula of all 20α - amino acids, Synthesis of Amino acids (Amination, Strecker's method, Gabriel's method, Azalactone method), Zwitter ion, Iso electric point, Reaction with Ninhvdrin.				
(B) PROTEINS:					
	Peptides and proteins, Nomenclature of peptide molecules, Geometry of peptide linkage, Synthesis of di and tri peptides by Bergmann – Zarvas method, Determination of structure of polypeptides / Proteins: Nitrogen terminal method: Use of DNFB, Edman method, Carbon terminal method, Partial hydrolysis, Primary, secondary and tertiary structures of Proteins, Biological importance of proteins.				
UNIT-III	LIPIDS :	15 Hours			
	Definition, Chemical composition of oils, fats and waxes, Name and structures of few fatty acids found in oil, fat and waxes, Hardening of oil, Drying oil, Soap and Saponification, Detergents: Preparation of ABS and LAS, Mechanism of Cleaning, Bio hard and bio soft detergents, Biological role of Lipids. Acid value, Saponification value and Iodine value of oil.				

- 1. Organic Chemistry : R T Morrison and R N Boyd , 6th or 7th Edition , Prentice Hall, New Delhi
- 2. A Text book of Organic Chemistry : P L SONI, Sultan Chand and sons, New Delhi
- 3. College Organic Chemistry : Singh, Upadhyay, Rao, , Himalaya Publishing house,
- 4. College Organic Chemistry for SYBSc : Singh, Upahyay, Rao and Lalwani : Himalaya Publishing house
- 5. Organic Chemistry: Cram, Hammond and Hendrickson.
- 6. Simple Organic Chemistry: Ramesh Luhana Rughwani & Dr.Dinesh Kundariya. Maglam Publ. New Delhi.

<u>KACHCHH UNIVERSITY: BHUJ</u> SECOND YEAR B.Sc.: CBCS: SEMESTER: III (THREE) CHEMISTRY PAPER NAME: BIO-ORGANIC CHEMISTRY PRACTICAL PAPER CODE NO: MAJ CHE-302-P Marks: External Evaluation: 10, Internal Evaluation: 15. Total Marks 25

Course Outcomes (COs):

After the completion of the course, the students will be able to:

- To find out the amount of organic compounds by volumetric analysis.
- Practical skills in the field and laboratory experiments in quantitative analysis.
- Also determine some specific sample (food analysis) some test.
- The course will provide ability to student to analysis some commercial organic & food sample.

> ORGANIC ESTIMATION:

To find out the amount of Aniline, Phenol, Glucose, Amide, Carboxylic acid in the given solution by volumetric analysis.

> FOOD ANALYSIS

- 1. To measure out saponification value of given oil sample.
- 2. To measure out iodine value of given oil sample.
- 3. To measure out acid value of given sample of oil.
- 4. To determine the amount of calcium in milk with EDTA.
- 5. To determine the amount of total carbohydrate in sample of beverages.

> JOURNAL:

> VIVA:

Note: Student shall not be allowed to appear in the examination if he does not produce certified journals.

KACHCHH UNIVERSITY: BHUJ SECOND YEAR B.Sc.: CBCS: SEMESTER: III (THREE) CHEMISTRY PAPER NAME: ORGANIC CHEMISTRY PAPER CODE NO: MAJ CHE-303

Course Ou	itcomes (COs):					
Upon successful completion of these papers' students will learn about concepts of organic						
Chemistry, like detailed study of acid-base properties of organic substances, PNAC: (polynuclear						
aromatic cor	npounds), electrophilic aromatic substitution, organic nitrogen comp	ounds. This				
study will be	helpful in further study, competitive exam and industries					
	UNIT I ACID BASE PROPERTIES OF OPCANIC SUBSTANCES.					
UNIT-I	(11-1 ACID - DASE I KOI EKTIES OF OKGANIC SUBSTANCES.					
	Introduction: Acid – base theory of Arrhenius, of Lowry – Bronsted and of					
	Lewis, Mode of expression of strength of acid and base (pka, pkb values),					
	Actual character of saturated alignatic mono and di carboxylic acids,					
	Aromatic acids, Phenois, Basicity of Aliphatic and Aromatic Amines and					
	other compounds like Alconois, Aldenydes, Ketones, Amides, Imides, Nitro					
	and Cyano compounds. The factors to be covered must include inductive					
LINIT II	PNAC · (POI VNIICI FAP APOMATIC COMPOUNDS).	15 Hours				
UN11-11	THAC. (I OLTHOCLEAR AROMATIC COMI OUNDS).	15 110015				
	Introduction, Definition, Study of Naphthalene, Anthracene and					
Phenanthrene, Their aromatic character, Structural features, Synthesis of						
parent and derivatives by Haworth ring closure method, Chemical properties						
(Addition, oxidation, Electrophilic substitution with mechanism)						
UNIT-III		15 Hours				
	(A) ELECTROPHILIC AROMATIC SUBSTITUTION	8 Hours				
	Disubstituent in Benzene, Determination of orientation, Relative reactivity,					
	Classification of substituents, Mechanism of disubstitution, (Theory of					
	Orientation and reactivity), Orientation in disubstituted benzenes (only					
	guidelines, no mechanism), Synthetic application and Conversions.					
(B) ORGANIC NITROGEN COMPOUNDS 7 H						
	Preparation and physical properties and chemical reactions of Nitriles,					
	Isonitriles, Carbamates, Semi carbazides and their application in organic					
	synthesis.					
	Structure and nomenclature of amines, Preparation of aryl amines, physical					
	properties and chemical reactions, Gabriel-phthalimide reaction,					
	Bromamide reaction.					

- 1. Organic Chemistry : R T Morrison and R N Boyd , 6th or 7th Edition , Prentice Hall, New Delhi
- 2. A Text book of Organic Chemistry : P L SONI, Sultan Chand and sons, New Delhi
- 3. College Organic Chemistry : Singh, Upadhyay, Rao, , Himalaya Publishing house,
- 4. College Organic Chemistry for SYBSc : Singh, Upahyay, Rao and Lalwani : Himalaya Publishing house
- 5. Organic Chemistry : Cram, Hammond and Hendrickson.
- 6. Organic Chemistry by L. G. Wade Jr.
- 7. Basic course in Organic Chemistry : Ramesh Luhana . Maglam Publ. New Delhi.
- 8. Simple Organic Chemistry : Ramesh Luhana Rughwani & Dr.Dinesh Kundariya. Maglam Publ. New Delhi.

<u>KACHCHH UNIVERSITY: BHUJ</u> SECOND YEAR B.Sc.: CBCS: SEMESTER: III (THREE) CHEMISTRY PAPER NAME: ORGANIC CHEMISTRY PRACTICALS PAPER CODE NO: MAJ CHE-304-P

Marks: External Evaluation: 10, Internal Evaluation: 15. Total Marks 25

Course Outcomes (COs):

After the completion of the course, the students will be able to:

- Qualitatively analyze unknown organic compound with a nature of substance, element, functional group and physical constant.
- Practical skills in the field and laboratory experiments in Organic qualitative analysis.
- The course will provide ability to student to identify any pure organic compound.

> ORGANIC SPOTTING:

Qualitative analysis of bifunctional Organic compounds such as:

1) Salycilic acid, p-Nitro benzoic acid, Anthranilic acid, p-Chloro benzoic acid

2) Resorcinol, o- Nitrophenol, p-nitophenol

3) o-Nitro aniline, p-Nitroaniline, p-Toluidine, p-Chloroaniline, p- Bromoaniline,

4) Ethyl Salicylate, Salicylaldehyde, Actophenone, p-Dichlorobenzene, p-Nitro toluene, Benzamide etc.

Other organic compound not included may also be considered.

> JOURNAL

> VIVA

Note: Student shall not be allowed to appear in the examination if he does not produce certified journals.

KACHCHH UNIVERSITY: BHUJ SECOND YEAR B.Sc.: CBCS: SEMESTER: III (THREE) CHEMISTRY PAPER NAME: INORGANIC CHEMISTRY PAPER CODE NO: MAJ CHE-305

Course Outcomes (COs):						
Upon successful completion of these papers' students will learn about concepts of Basic						
Chemistry, like Wave mechanics, molecular orbital theory, non-aqueous solvents, valence bond						
theory, crystal field theory. This study will be helpful in further study, competitive exam and						
industries.						
UNIT-I	WAVE MECHANICS	15 Hours				
	Wave postulates of quantum mechanics, wave function and its					
	interpretation. Operators (linear Hermitian, their addition subtraction					
	and multiplication). Commutators, setting up of operators for					
	different observables (physical quantities) like position x-component					
	of momentum (Px), momentum (P), Kinetic energy(T), x-component					
	of Kinetic energy (Tx). Potential Energy (V). Total energy(E.H).					
	Hamiltonian operator. Setting up of Hamiltonian Operator for					
	different atoms upto carbon Eigen function and Eigen value Mean					
	expectation value. Schrodinger wave equation and particle in a one					
	dimensional box electron in a ring					
LINIT II	dimensional box; electron in a mig.	15 Hours				
UN11-11 (A) MOLECHI AD ODDITAL THEODY						
Basic principles, LCAO, formation of sigma and pie bonding.						
	antibonding nonbonding molecular orbitals, bond order and its					
	significance, configuration of some heteronuclear molecules and their					
	MO formation- BeH2 CH4 and BH3 MO diagrams of complex					
molecules $[Co(NH_3)_6]^{3+}$. $[CoF_6]^{3-}$. $[Ni(CN_6]^{2-}$ and $[Ni(CO)_4]$						
$(\mathbf{B}) \mathbf{NON} \mathbf{AOUFOUS} \mathbf{SOUVENTS}$						
(D) NON AQUEOUS SOLVEN IS Classification common properties of jonic solvents dielectric						
	constant, dipole moment, viscosity, electrical conductivity, proton					
	affinity, melting and boiling points, Chemical prop of non aq.					
	solvents liq. Ammonia, liq. SO2, liq. HF - Acid base reactions,					
	solvated complex formation reactions, solvolytic reaction,					
	precipitation reaction, oxidation reduction reaction, differentiating					
	and leveling solvents.	15 II				
UNIT-III	CHEMICAL BUNDING	15 Hours				
	(A) VALENCE BOND THEORY	8 Hours				
Hybridization of orbitals, structure of complexes $[Co(NH_3)_6]^{37}$, $[CoE 1^{37}, [MnCl_1]^{27}, [Ni(CN)_1]^{27}$ based on hybridization theory						
limitations of VB Theory						
	(B) CRYSTAL FIELD THEORY	7 Hours				
	Crystal field splitting due to octahedral, tetrahedral, square planar					
	fields created by ligands. Spin free and spin paired conditions. CFSE					

(crystal field stabilization energy), magnetic properties of complexes.	
Absorption spectra of complexes, thermodynamic properties due to	
crystal field like Lattice energy, heat of hydration, ionic radii of M ²⁺ ,	
ions of the first transition series, Jahn Teller Effect	

- 1. Introductory Quantum Chemistry: A K Chandra, 5th Edition, Mc Graw Hill (1998).
- Basic Inorganic Chemistry: F. Allert, Cotton, G. Wilkinson, P.L Gans, 3rd Edition, John Willey, New York, 1995.
- 3. Valency and Molecular structures E. Cartmell and G.W.A Fowels. 3rd Edition, ELBS, Bucter worth ,1970.
- 4. A New Concise Inorganic Chemistry, J.D Lee, 4th Edition ,1991 ELBS and D.van Nostrand company Ltd.
- 5. Principles of Inorganic Chemistry by Puri, Sharma and pathania, 29th Edition.

<u>KACHCHH UNIVERSITY: BHUJ</u> SECOND YEAR B.Sc.: CBCS: SEMESTER: III (THREE) CHEMISTRY PAPER NAME: INORGANIC CHEMISTRY PRACTICAL PAPER CODE NO: MAJ CHE-306-P Marks: External Evaluation: 10, Internal Evaluation: 15. Total Marks 25

Course Outcomes (COs):

After the completion of the course the students will be able to:

- Qualitatively analyze unknown inorganic salt mixture with cations and anions.
- Practical skills in the field and laboratory experiments in qualitative analysis.
- The course will provide ability to student to identify any inorganic salt mixture.

> INORGANIC MIXTURE: (Four radicals) (Any Ten)

		1		1	
(01)	$ZnS + (NH_4) _2CO_3$	(02)	$ZnS + NiCO_3$	(03)	$ZnS + MgCO_3$
(04)	$ZnS + MnCO_3$	(05)	$ZnCO_3 + Al_2(SO_4)_3$	(06)	$MgCO_3 + Al_2(SO_4)_3$
(07)	$(NH_4)_2CO_3 + K_2SO_4$	(08)	$CaCO_3 + NaHSO_4$	(09)	K_2 SO ₄ + Na ₂ SO ₄ +
					(NH ₄) ₂ SO ₄
(10)	$KCl + MgCl_2 + NaCl$	(11)	Fe SO ₄ + Al ₂ (SO ₄) ₃ +	(12)	$KCl + SrBr_2$
			(NH ₄) ₂ SO ₄		
(13)	$KBr + NaBr + NH_4Br$	(14)	$BaCl_2 + SrBr_2$	(15)	KBr + NH4Cl
				(10)	
(16)	$MgCl_2 + Kl$	(17)	$SrBr_2 + KI$	(18)	$(NH4)_2$ SO ₄ + MgCl ₂
(10)	Cra CO + KD -	(20)	$S = CO \rightarrow KCI$	(21)	
(19)	$CU SO_4 + KBr$	(20)	$SI CO_3 + KCI$	(21)	$Ba CO_3 + NH4CI$
(22)	$CrCl_3 + (NH_4)_2 SO_4$	(23)	K_2 SO ₄ + K_2 CO ₃ + KCl	(24)	$Pb(NO_3)_2 + KNO_2$
	, , 				
(25)	KBr + KCl + KI	(26)	$NaNO_2 + Sr(NO_3)_2$	(27)	$KNO_2 + NH_4NO_3$
(28)	$K_2CrO_4 + (NH_4)_2 SO_4$	(29)	$K_2CrO_4 + NH_4Cl$	(30)	$MnCl_2 + Zn SO_4$
(31)	$NaNO_3 + KBr$	(32)	$Sr(NO_3)_2 + CaCl_2$	(33)	$BaCl_2 + Sr(NO_3)_2$
(34)	$Ca(NO_3)_2 + Mg SO_4$	(35)	$NH_4Cl + KCl + MgCl_2$	(36)	$K_2SO_4 + NH_4Br$

> JOURNAL

> VIVA

Note: Student shall not be allowed to appear in the examination if he does not produce certified journals.

KACHCHH UNIVERSITY: BHUJ SECONND YEAR B.Sc.: CBCS: SEMESTER: III (THREE) CHEMISTRY PAPER NAME: BIO-ORGANIC CHEMISTRY PAPER CODE NO: MDC CHE-307

Course Outcomes (COs):						
Upon successful completion of these papers' students will learn about concepts of Basic						
Chemistry, li	Chemistry, like Carbohydrates, amino acids, proteins, lipids. This study will be helpful in further					
study, competitive exam and industries.						
UNIT-I	CARBOHYDRATES	15 Hours				
	Definition, Classification, Nomenclature of parent and derivatives, Reactions with open chain structure of Glucose and Fructose:					
	Oxidation (using Bromine water, Tollens' reagent, Fehling's reagent,					
	HIO4 and conc. HNO3), Reduction of Glucose and Fructose,					
	Acetylation of Glucose and Fructose, Epimer and Epimerization,					
	Osazone formation with mechanism and importance, Killiani-Fischer					
	synthesis, Ruff degradation, Open chain structure of Glucose, Cyclic					
LINIT II	structure of Glucose and conformations	15 Hound				
UNII-11		15 Hours				
		7 Hrs				
	Definition, structural formula of all 20 α - amino acids, Synthesis of					
	Amino acids (Amination, Strecker's method, Gabriel's method,					
Ninhydrin.						
	(B) PROTEINS:					
Peptides and proteins, Nomenclature of peptide molecules, Geometry						
	of peptide linkage, Synthesis of di and tri peptides by Bergmann -					
	Zarvas method, Determination of structure of polypeptides / Proteins:					
	Nitrogen terminal method: Use of DNFB, Edman method, Carbon					
	terminal method, Partial hydrolysis, Primary, secondary and tertiary					
	structures of Proteins, Biological importance of proteins.					
UNIT-III	LIPIDS:	15 Hours				
	Definition, Chemical composition of oils, fats and waxes, Name and					
structures of few fatty acids found in oil, fat and waxes, Hardening of						
	oil, Drying oil, Soap and Saponification, Detergents: Preparation of					
	ABS and LAS, Mechanism of Cleaning, Bio hard and bio soft detergents Diplogical role of Lipida Acid value Separification value					
	and Iodine value of oil					

- 1. Organic Chemistry : R T Morrison and R N Boyd , 6th or 7th Edition , Prentice Hall, New Delhi
- 2. A Text book of Organic Chemistry : P L SONI, Sultan Chand and sons, New Delhi
- 3. College Organic Chemistry : Singh, Upadhyay, Rao, , Himalaya Publishing house,
- 4. College Organic Chemistry for SYBSc : Singh, Upahyay, Rao and Lalwani : Himalaya Publishing house
- 5. Organic Chemistry: Cram, Hammond and Hendrickson.
- 6. Simple Organic Chemistry: Ramesh Luhana Rughwani & Dr.Dinesh Kundariya. Maglam Publ. New Delhi.

KACHCHH UNIVERSITY: BHUJ SECOND YEAR B.Sc.: CBCS: SEMESTER: III (THREE) CHEMISTRY PAPER NAME: BASIC CHEMISTRY-I-PRACTICAL PAPER CODE NO: MDC CHE-308-P Marks: External Evaluation: 10, Internal Evaluation: 15. Total Marks 25

Course Outcomes (COs):

After the completion of the course, the students will be able to:

- To find out the amount of organic compounds by volumetric analysis.
- Practical skills in the field and laboratory experiments in quantitative analysis.
- Also determine some specific sample (food analysis) some test.
- The course will provide ability to student to analysis some commercial organic & food sample.

> ORGANIC ESTIMATION:

To find out the amount of Aniline, Phenol, Glucose, Amide, Carboxylic acid in the given solution by volumetric analysis.

> FOOD ANALYSIS

- 6. To measure out saponification value of given oil sample.
- 7. To measure out iodine value of given oil sample.
- 8. To measure out acid value of given sample of oil.
- 9. To determine the amount of calcium in milk with EDTA.
- 10. To determine the amount of total carbohydrate in sample of beverages.

> JOURNAL:

> VIVA

Note: Student shall not be allowed to appear in the examination if he does not produce certified journals.

UNIVERSITY PRACTICAL EXAM PATTERN

There will be a Three Exercise in each practical, as under, total of **20 Marks**. (1) Practical exercise (15 marks) (2) Viva (3 marks) (3) Practical Journal (2 marks)

Duration of Exam: 3 Hrs.

Examiner will submit marks out of 10 to university.

Passing standard: 4 Marks out of 10 Marks.

KACHCHH UNIVERSITY: BHUJ SECOND YEAR B.Sc.: CBCS: SEMESTER: III (THREE) CHEMISTRY PAPER NAME: SKILL BASED PRACTICAL-I PAPER CODE NO: SEC CHE-301-P

Marks: External Evaluation: 25, Internal Evaluation: 25. Total Marks 50

Course Outcomes (COs):

After the completion of the course, the students will be able to:

- To find out the adulteration present in milk & milk product.
- Students will be able to detect common adulteration present in oil, honey, sugar etc.

> To detect the purity of milk and milk products

- 1. Detection of water in milk.
- 2. Detection of detergent in milk.
- 3. Detection of starch in milk and milk products.
- 4. Detection of potatoes in milk products.
- 5. Detection of Added Urea/Ammonium Salts in Milk.
- 6. Detection of Preservatives added to Milk
 - Formalin, Hydrogen peroxide, Boric Acid and Borate, Benzoic and Sodium benzoate, Salicylic Acid, Mercuric chloride

> To detect the purity of oil / Honey/ Sugar/ Jaggery/ Hing/ Chilli powder.

- 1. Detection of other oil in coconut oil.
- 2. Detection of TOCP (Tri-ortho-cresyl-phosphate) in oil.
- 3. Detection of sugar solution in honey.
- 4. Detection of chalk powder in Sugar/ Jaggery.
- 5. Detection of foreign resin in Hing.
- 6. Detection of soap stone in Hing.
- 7. Detection of starch in Hing.
- 8. Detection of artificial color in chilli powder.
- 9. Detection of cassia bark in cinnamon.
- 10. Detection of lead chromate in turmeric whole.
- 11. Detection of artificial color in turmeric powder.
- 12. Detection of exhausted tea/ Iron filings in tea leaves.
- 13. Differentiation of common salt and iodised salt.

> JOURNAL:

Journals are to be signed regularly by the concerned teacher and finally certified before the College Internal test. If student does not bring the certified journal at the exam, he/she will not be allowed for the exam.

> VIVA

REFERENCE BOOKS:

- 1. FSSAI- Manual of Methods of Analysis of Foods Oils & Fats, 2016
- 2. FSSAI DART Manual

UNIVERSITY PRACTICAL EXAM PATTERN-SEC

There will be a Four Exercise in each practical, as under, total of **25 Marks**.

(1) Exercise-I (10 marks) (2) Exercise-II (10 marks) (3) Viva (3 marks) (4) Practical Journal (2 marks)

Duration of Exam: 4 Hrs.

Passing standard: 10 Marks out of 25 Marks.