Krantiguru Shyamji Krishna Verma Kachchh University Master of Science (Information Technology) Semester: I

Paper	· Code: CCCS103	Total Credit : 4
Title of Paper: Data Warehousing and Data Mining		Total Marks:
		70 Time : 3 Hrs
		Time: 5 mis
Unit	Description	Weighting
I	Introduction	Weighting
	An overview and definition along with clear understanding of the four	
	appearing in the definition.	
	Differences between Operational Database Systems and Data Warehouses	
	Overview of Multi-dimensional Data Model, and the basic differentiation	• • • •
	between "Fact"and "Dimension"; Multi-dimensional Cube Concept	20%
	Hierarchies of "Dimensions" Parameters: Examples and the advantages. Star, Snowflakes, and Fact Constellations Schemas for Multi-dimensional	
	Databases Measures: Their Categorization and Computation, Pre-	
	computation of Cubes, Constraint on Storage Space, Possible Solutions	
	OLAP Operations in Multi-dimensional Data Model: Roll-up, Drill-down,	
	Slice & Dice, Pivot (Rotate). Indexing OLAP Data; Efficient Processing of	
	OLAP Queries. Type of OLAP Servers: ROLAP versus MOLAP versus	
	HOLAP, Metadata Repository	
II	Data warehouse Architecture	
	The Design of A Data Warehouse: A Business Analysis Framework;	20%
	The Process of Data Warehouse Design, A 3-Tier Data Warehouse Architecture; Enterprise Warehouse, Data mart, Virtual Warehouse,	20 / 0
	Discovery-Driven Exploration of Data Cubes; Complex Aggregation at	
	Multiple Granularity: Multi-feature Cubes, Constrained Gradient Analysis of	
	Data Cubes	
III	Pre-Processing	
	The need for Pre-processing, Descriptive Data Summarization	
	Data Cleaning: Missing Values, Noisy Data, Data Cleaning as a Process	
	Data Integration & Transformation, Data Cube Aggregation; Attribute	200/
	Subset Selection, Dimensionality Reduction:(Basic Concepts only).	20%
	Numerosity Reduction: Regression & Log-linear Models, Histograms,	
	Clustering, Sampling. Data Dicretization & Concept Hierarchy Generation	
	For Numerical Data: Binning, Histogram Analysis, Entropy-based	
	Discretization, Interval Merging by x Analysis, Cluster Analysis, Discretization by Intuitive Partitioning For Categorical Data	
IV	Data Mining- An Introduction	
- 1	An Overview; What is Data Mining; Data Mining - on What Kind of Data	
	Data Mining Functionalities - What Kind of Patterns Can be Mined;	
	Concept/Class Description: Characterization & Discrimination; Mining	20%
	Frequent Patterns, Associations, and Correlations; Classification &	
	Prediction; Cluster Analysis; Outlier Analysis, Classification of Data Mining Systems Data Mining Task Primitives, Integration of a Data Mining	
	System with a Data Winning Fask Filmutves, Integration of a Data Winning System with a Database or Data Warehouse System, Major Issues in Data	
	Mining	
V	Mining Frequent Pattern, Association and correlations	
	Basic Concepts: Market Basket Analysis; Frequent Itemsets, Closed	
	Itemsets, and Association Rules; Frequent Pattern Mining: A Roadmap	
	Apriori Algorithm: Finding Frequent Itemsets Using Candidate Generation; Generating Association Rules from Frequent Itemsets; Improving the	20%
	Efficiency of Apriori. From Association Mining to Correlation Analysis;	20/0
	Interesting: An Example; From Association Analysis to Correlation	
	Analysis Introduction to Classification and Prediction, Supervised learning,	
	Unsupervised learning, Classification by decision tree induction	
,	Text & Reference Books :-	
1.	Jiawei Han & Micheline Kamber, "Data Mining: Concepts & Te	chniques", Morgan
	Kaufmann Publishers (2002)	

Krantiguru Shyamji Krishna Verma Kachchh University Master of Science (Information Technology) Semester: I

Paper Code: CCCS103	Total Credit: 4
	Total Marks: 70
Title of Paper: Data Warehousing and Data Mining	Time: 3 Hrs

Unit	Description		Total Marks
I	Q.1 (A) Answer the Following. (Definitions, Blanks, Full Forms, True/False, Match the Following)	06	14
	Q.1 (B) Medium / Long Questions. (With Internal Option)	08	
II	Q.2 (A) Answer the Following. (Definitions, Blanks, Full Forms, True/False, Match the Following)	06	14
	Q.2 (B) Medium / Long Questions. (With Internal Option)	08	
III	Q.3 (A) Short / Medium Questions (With Internal Option)	06	14
	Q.3 (B) Medium / Long Questions. (With Internal Option)	08	
IV	Q.4 (A) Short / Medium Questions (With Internal Option)	06	14
	Q.4 (B) Medium / Long Questions. (With Internal Option)	08	
V	Q.5 (A) Short / Medium Questions (With Internal Option)	06	14
	Q.5 (B) Medium / Long Questions. (With Internal Option)	08	